CHEMICAL ENGINEERING AND FOOD TECHNOLOGY

COME JOIN THE DO CULTURE

SingaporeTech.edu.sg
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>About SIT</td>
</tr>
<tr>
<td>2</td>
<td>Why Pursue Chemical Engineering and Food Technology at SIT?</td>
</tr>
<tr>
<td>3</td>
<td>Hear What Our Students Say</td>
</tr>
<tr>
<td>5</td>
<td>Hear What the Industry Says</td>
</tr>
<tr>
<td>6</td>
<td>Pharmaceutical Engineering</td>
</tr>
<tr>
<td>11</td>
<td>Food Technology</td>
</tr>
<tr>
<td>15</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>18</td>
<td>Admission Requirements</td>
</tr>
<tr>
<td>20</td>
<td>Other Programmes Offered under Chemical Engineering and Food Technology</td>
</tr>
</tbody>
</table>
Singapore Institute of Technology (SIT) is Singapore’s university of applied learning. SIT upholds the vision of being a leader in innovative learning by integrating learning, industry and community.

Our mission is to nurture and develop individuals who build on their interests and talents to impact society in meaningful ways. The university also aims to cultivate in its students four distinctive traits, or the SIT-DNA, which will prepare them to be ‘Thinking Tinkerers’, ‘Able to Learn, Unlearn and Relearn’, ‘Catalysts for Transformation’ and ‘Grounded in the Community’.

The university’s applied degree programmes offer you a chance to experience a unique pedagogy that integrates work and study. SIT’s degree programmes feature a six- to 12-month Integrated Work Study Programme (IWSP) which exemplifies the best of university-industry collaboration.
WHY PURSUE CHEMICAL ENGINEERING AND FOOD TECHNOLOGY AT SIT?

KEY PILLARS IN SINGAPORE’S ECONOMY
The chemical, pharmaceutical and food sectors form key pillars of the Singapore economy. There is a greater need to develop graduates with expertise to solve complex and interdisciplinary problems in the chemical, energy, pharmaceutical and food industries.

OUR APPLIED LEARNING PEDAGOGY
Students will have the opportunity to learn both in the classroom and industrial setting. Through the seven- to eight-month Integrated Work Study Programme (IWSP), students will contextualise their learning and integrate theoretical knowledge with industry-relevant skills.

SPECIALISED TRAINING
At SIT, we offer programmes in Chemical Engineering, Pharmaceutical Engineering and Food Technology, where we scaffold specialist training onto fundamental grounding to endow our students with practical knowledge that is built on the rudiments of the discipline.

INDUSTRY-CENTRIC
Our unique pedagogy coupled with an industry-centric curriculum will give our students a competitive edge in the job market. They can apply their integrated knowledge in science, technology and engineering, to develop and improve products and processes, without compromising the environment.

MEANINGFUL CAREER PROSPECTS
Graduates can look forward to careers that will contribute towards the sustainable production of chemicals, pharmaceuticals and food, address energy and food security challenges, and develop innovative solutions and new products that will address today’s challenges and tomorrow’s needs.

Each year, we welcome more than 300 new undergraduates into the cluster. We interface our students with the industry right from day one through our applied learning pedagogy and signature IWSP. You can look forward to be equipped with industry-ready skills and hit the ground running when you start your career in industry.”

Associate Professor Susanna Leong
Assistant Provost (Applied Research) and Cluster Director
Chemical Engineering and Food Technology
Singapore Institute of Technology
HEAR WHAT OUR STUDENTS SAY

I was drawn to SIT’s unique Pharmaceutical Engineering programme as it has a streamlined curriculum geared towards equipping students to be industry-ready. During my industry induction programme, I was given the opportunity to intern at Tychan Pte Ltd, a biologics startup, where I worked on developing antibodies for Yellow Fever and ZIKA virus. The four-month internship was meaningful as I was able to directly apply the theoretical knowledge gained in lectures to solving real industry problems. I am looking forward to the eight-month IWSP to further push myself and learn more about the pharma industry!“

Elango Meenakshi Yazhini
Pharmaceutical Engineering, BEng (Hons)
Singapore Institute of Technology

Scan the QR code to find out more.
HEAR WHAT OUR STUDENTS SAY

“SIT’s applied learning approach allowed me to connect and apply the theories learnt in the classroom to solve industry problems. One instance would be my project-based module called, ‘Food Technology 1 and 2: Global and Creative Solutions’ where systematic problem-solving skills were taught to tackle a complex food-related problem. My project was about solving food waste in the Singapore retail sector. Through this learning process, I now understand why food waste is a paramount issue to tackle. Such modules taught in my programme have provided me with a wholesome learning experience which I hope to contribute meaningfully to the industry in future.”

Esmond Ong Hong Bao
Food Technology, BFoodTech (Hons)
Singapore Institute of Technology – Massey University
HEAR WHAT THE INDUSTRY SAYS

"SIT students are very independent, take initiative and are open to criticism. Their good work and learning attitude have helped them to integrate well into their assigned projects, and to see through the projects end-to-end. The students are also a good complement to our organisation, as they possess skills and knowledge that the full-time employees do not have, thus complementing each other as a team!"

Ms Chen Ning
Executive Chef
Udders Ice Cream

"Excellent academia. We worked closely with SIT faculty and students on research and development projects as well as for the IWSP. They are hands-on, insightful and equipped with relevant knowledge that helped make a difference in finding solutions to our problem statements."

Mr John Cheng
Director
Innovate 360 Food Incubator
Cheng Yew Heng Candy Factory Pte Ltd

"We have employed six SIT graduates since 2015. These young engineers exhibit strong technical competency and good problem-solving skills. We are glad to have them, contributing their knowledge and skills for the progress and growth of our company."

Ms Ng Mee Lin
Manager
PP Manufacturing/HSE, Tech Coordination
The Polyolefin Company (S) Pte Ltd

"As an industrial adjunct faculty, I found that SIT students performed well in my operational excellence class. We certainly look forward to see them applying the knowledge during their IWSP to improve the industry processes."

Mr Sankar Dharmaraj
Head PMO and Site Operation Excellence
Novartis Pharmaceuticals

"I have hired three SIT graduates in my team as Field Service Engineers. They are eager to learn, hardworking, team players, independent and have great leadership skills. Their polytechnic background has enhanced their ability to be hands-on, which is very important in our industry. I see potential in them to take on roles with increasing accountabilities and responsibilities. Overall, my experience with SIT graduates has been very positive and I would certainly recommend others to consider hiring them."

Mr Lawrence Yeo
Lead Service Resource Manager
Water and Process Technologies
SUEZ - Water Technologies & Solutions

Mr David Cheng
Head
Nutritional Innovation and Application Centre
DSM Nutritional Products
Built on an interdisciplinary curriculum that intersects engineering, life sciences and chemistry, the Pharmaceutical Engineering (PharmE) programme aims to deliver a rigorous education that has a strong industry focus. The goal of this programme is to produce graduates who are both theoretically grounded and practice-oriented for the knowledge-intensive pharmaceutical industry and related sectors.

Distinguished by a curriculum that is strongly girded with cutting-edge, industry-compliant concepts and know-how, students will be trained in core competencies in the development and manufacturing of the two largest classes of pharmaceutical drugs — (i) biologics and (ii) small molecule drugs. The curriculum’s strong grounding in both engineering and science will strengthen the programme’s foundation, upon which students will be trained in the full spectrum of skill sets pertinent to drug manufacturing. This ranges from drug development and production to process development, operations, validation, regulation and compliance.

Modules to develop students’ business and management acumen will also be offered to add breadth to the technical specialisation of the programme, allowing them to gain an understanding of the expectations of commercial environments and productivity management. The translational nature of PharmE’s curriculum will allow students to readily apply their science and engineering knowledge in the highly advanced and regulated pharmaceutical manufacturing environment, thus grooming graduates who can make impactful contributions to industry.

Strong Industrial Partnership in Curriculum Development and Industrial Case-Study Sharing

Obtain Industry-Endorsed Competency-Based Certifications

Capstone Projects Centred on Solving Industry Problems
CURRICULUM STRUCTURE

YEAR 1

<table>
<thead>
<tr>
<th>TRIMESTER 1</th>
<th>Fundamentals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>Mass and Energy Balance</td>
</tr>
<tr>
<td></td>
<td>Biomolecular Science I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 2</th>
<th>Core I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry Lab</td>
</tr>
<tr>
<td></td>
<td>Programming for Pharmaceutical Engineering</td>
</tr>
<tr>
<td></td>
<td>Engineering Principles I (Heat and Mass Transfer)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 3</th>
<th>Core II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td></td>
<td>Engineering Thermodynamics</td>
</tr>
<tr>
<td></td>
<td>Engineering Thermodynamics Lab</td>
</tr>
<tr>
<td></td>
<td>Biomolecular Science II</td>
</tr>
<tr>
<td></td>
<td>Engineering Principles II (Fluid Mechanics)</td>
</tr>
<tr>
<td></td>
<td>Career and Professional Development I</td>
</tr>
</tbody>
</table>

YEAR 2

| TRIMESTER 1 | Break (Optional Industrial Induction Programme) |

<table>
<thead>
<tr>
<th>TRIMESTER 2</th>
<th>Core III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operational Excellence</td>
</tr>
<tr>
<td></td>
<td>Current Good Manufacturing Practices</td>
</tr>
<tr>
<td></td>
<td>Technical Writing and Communication</td>
</tr>
<tr>
<td></td>
<td>Engineering Principles III (Reaction Engineering)</td>
</tr>
<tr>
<td></td>
<td>Career and Professional Development II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 3</th>
<th>Biologics Specialisation I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expression Engineering</td>
</tr>
<tr>
<td></td>
<td>Bioprocess Engineering</td>
</tr>
<tr>
<td></td>
<td>Cell Culture Lab</td>
</tr>
<tr>
<td></td>
<td>Bioseparations I (Primary Purification)</td>
</tr>
<tr>
<td></td>
<td>Foundations of Finance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 3</th>
<th>SMD Specialisation I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medicinal Chemistry</td>
</tr>
<tr>
<td></td>
<td>Unit Operations I (Reactor Design, Distillation, Extraction)</td>
</tr>
<tr>
<td></td>
<td>Unit Operations II (Purification and Isolation)</td>
</tr>
<tr>
<td></td>
<td>Downstream Processing I (Particle Technology)</td>
</tr>
<tr>
<td></td>
<td>Foundations of Finance</td>
</tr>
</tbody>
</table>
Year 3

Trimester 1
- Biologics Specialisation II
 - Bioanalyticals
 - Bioseparations II (Secondary Purification)
 - Bioseparations Lab
 - Process Safety
 - Process Monitoring, Automation and Control
- SMD Specialisation II
 - Analytical Chemistry
 - Downstream Processing II (Blending and Tableting)
 - Unit Operations Lab
 - Process Safety
 - Process Monitoring, Automation and Control

Trimester 2
- Integrated Work Study Programme (IWSP)
- Capstone Project

Trimester 3
- Integrated Work Study Programme (IWSP)
- Capstone Project

Year 4

Trimester 1
- Operations Management
 - Process Validation
 - Plant Design and Operations
 - Quality by Design in Pharmaceutical Development
 - Project Management
Students will be able to enrich their learning experience by embarking on various international programmes such as the Overseas Exposure Programme (OEP), International Internship Programme (IIP), Student Exchange Programme and Overseas Integrated Work Study Programme (OIWSP). They will have the opportunity to embark on a training attachment at pharmaceutical manufacturing facilities overseas and work with modern industrial-scale unit operations in Good Manufacturing Practice (GMP) or GMP-simulated pharmaceutical manufacturing environments. Students will also have the opportunity to learn state-of-the-art analytical technologies for pharmaceutical product monitoring and certification, gaining an insider’s view to the pharmaceutical industry. Through these carefully crafted international programmes, students can gain a global perspective of the industry’s best practices to inspire them further.

Besides the pharmaceutical industry, graduates can look forward to careers in these areas:

- Chemicals
- Biotechnology and Life Sciences
- Nutraceuticals
- Flavours and Fragrances
The members of the Industry Advisory Committee for this programme are:

Ms HO Wengsi
Director
Biomedical Sciences
Economic Development Board

Mr Matthew LECLAIR
Plant Manager
Technical Operations
Shire

Mr LIM Hock Heng
Vice President and Managing Director
Glaxo Wellcome Manufacturing, Singapore

Mr LIM Sing Yong
Operation Readiness and Commissioning Manager
Shell, China

Mr Jose SANCHEZ
Site Head
Novartis Singapore Pharmaceutical Manufacturing Pte Ltd

Mr John SMITH
Managing Director
MSD International GmbH (Singapore)
The SIT-Massey University joint degree programme in Food Technology offers a curriculum focussed on Food Product Technology, combining food science, food engineering and food business. The programme educates and equips students with the fundamentals of food science and applied food technology skills required for a global career in the food industry. Beyond the classroom, students will learn through practical laboratory and workshop sessions that focus on industry problems and solutions. Students will obtain hands-on experience in industrial-standard food processing plants under the mentorship of highly qualified lecturers who have valuable work experience in international food industries.

With the growing worldwide focus on health and well-being through food consumption as well as food development and manufacturing, there is a demand for graduates to fill vacancies. Through the joint degree programme in Food Technology, students are trained to be innovators and agents of change in the food industry where they apply scientific and engineering principles, as well as recognise and create what is needed in the marketplace. Students will also gain the entrepreneurial skills needed to bring new ideas to the consumer successfully.

Visit SingaporeTech.edu.sg for the list of relevant qualifications.

PROGRAMME HIGHLIGHTS

- Practise Food Technology from Day One
- Classes Focussed on Problem-Solving
- Balance of Science, Technology and Business
- Business and Management Focus
- Gain Work Experience while Studying
CURRICULUM STRUCTURE

YEAR 1

<table>
<thead>
<tr>
<th>TRIMESTER 1</th>
<th>Fundamentals I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Chemistry for Food Technology</td>
</tr>
<tr>
<td></td>
<td>- Biomolecular Science for Food Technology</td>
</tr>
<tr>
<td></td>
<td>- Mass and Energy Balance</td>
</tr>
<tr>
<td></td>
<td>- Food Technology 1 and 2: Global and Creative Solutions</td>
</tr>
<tr>
<td></td>
<td>- Engineering Mathematics 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 2</th>
<th>Fundamentals II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Engineering Fundamentals (Mechanics and Electricity)</td>
</tr>
<tr>
<td></td>
<td>- Food Technology 3: Product Development</td>
</tr>
<tr>
<td></td>
<td>- Programming for Engineering</td>
</tr>
<tr>
<td></td>
<td>- Industrial Microbiology</td>
</tr>
</tbody>
</table>

| TRIMESTER 3 | Break |

YEAR 2

<table>
<thead>
<tr>
<th>TRIMESTER 1</th>
<th>Core I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Chemical Energetics</td>
</tr>
<tr>
<td></td>
<td>- Molecules to Materials</td>
</tr>
<tr>
<td></td>
<td>- Technical Writing and Communication</td>
</tr>
<tr>
<td></td>
<td>- Heat and Mass - Conservation and Transfer</td>
</tr>
<tr>
<td></td>
<td>- Fluid Flow and Particle Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 2</th>
<th>Core II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Food Technology 4: Manufacturing</td>
</tr>
<tr>
<td></td>
<td>- Food Technology 5: Food Microbiology and Safety</td>
</tr>
<tr>
<td></td>
<td>- Food Chemistry</td>
</tr>
<tr>
<td></td>
<td>- Career and Professional Development</td>
</tr>
<tr>
<td></td>
<td>- Engineering Mathematics 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIMESTER 3</th>
<th>Specialisation I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Food Technology 6: Food Characterisation</td>
</tr>
<tr>
<td></td>
<td>- Food Formulation Technology</td>
</tr>
<tr>
<td></td>
<td>- Nutrition and Food Choice</td>
</tr>
<tr>
<td></td>
<td>- Statistical Modelling for Engineers and Technologists</td>
</tr>
</tbody>
</table>
Specialisation II
- Food Packaging Engineering and Legislation
- Industrial Systems Improvement
- Process Engineering Operations
- Reaction Technology and Process Modelling

Integrated Work Study Programme (IWSP)

Development and Management
- Food Technology Project
- Prescribed Elective (Student to choose either one):
 - Added-Value Processing of Food Products
 - International Food Production Systems
 - Crystalisation in Foods
 - Food Law and Regulations

Advanced Food Technology
- Innovative Food Design and Development

CAREER OPPORTUNITIES

Graduates can look forward to careers in these areas:

- Quality Control and Assurance
- Food Manufacturing
- Food Microbiology and Safety
- Sensory, Nutrition and Regulatory
- Product Development

* Student will complete this module in Massey University.
^ Student will complete this module in SIT.
The members of the Industry Advisory Committee for this programme are:

Mr Philip HO
Commercial Lead Asia Pacific
Tereos Asia Pte Ltd

Mr LEE Kiow Seng
Director
Seagift Food Pte Ltd

Dr Allan LIM
Group Manager
Open Innovation
Nestlé R&D Center (Pte) Ltd

Dr Peter ONG
Chief Executive Officer
KH Roberts Pte Ltd

Dr SAW Lin Kiat
Chief Executive Officer
Faesol
The SIT-Newcastle University (NU) joint degree programme in Chemical Engineering aims to produce graduates who have a clear understanding of Chemical Engineering, combining a sound theoretical grasp of the subject with practical experience and an awareness of their responsibility to society and the environment. Consisting of key, traditional Chemical Engineering topics such as Transfer Processes and Unit Operations, and including contemporary and globally important areas such as Sustainable Design and Clean Technology, students will learn how to critically analyse real world process engineering problems through the use of computational tools.

Assessment will be based on several components such as coursework and written examinations. Students will have the opportunity to creatively apply what they have learnt to solve challenges posed by their final year Capstone Project on plant design. The academic training and soft skills acquired through the programme will produce capable graduates for the chemical industry. Graduates may also eventually choose to pursue industrial research to develop new solutions and innovative processes or a postgraduate route to an academic career.

Graduates of this programme with good academic results and relevant working experience may also pursue the SIT Master of Engineering Technology in Chemical Engineering (MEngTech).
CURRICULUM STRUCTURE

YEAR 1

| TRIMESTER 1 | Engineering Mathematics 1
| | Statistics
| | Mass and Energy Balance
| | Biomolecular Science |
| TRIMESTER 2 | **Fundamentals II**
| | Engineering Mathematics 2
| | Organic Chemistry
| | Organic Chemistry Lab
| | Technical Writing and Communication
| | Career and Professional Development |
| TRIMESTER 3 | **Break** |

YEAR 2

| TRIMESTER 1 | Heat and Mass Transfer
| | Reactor Engineering 1
| | Separation Processes 1
| | Thermodynamics
| | Computing and Simulation
| | Engineering Practice
| TRIMESTER 2 | Engineering Practice
| | Fluid Mechanics
| | Process Measurement, Dynamics and Control
| | Process Safety
| | Reactor Engineering 2
| | Separation Processes 2
| TRIMESTER 3 | **Specialisation I**
| | Chemical Process Optimisation
| | Sustainable Industry, Design and Manufacture
| | Overseas Immersion Programme (OIP)
| | Integrated Work Study Programme (IWSP) |
TRIMESTER 1
- Integrated Work Study Programme (IWSP)

TRIMESTER 2
- Process Design, Economics and Project Management
- Solids Handling
- Renewable Energy Technologies and Clean Technology Applications
- Final Year Plant Design Project

TRIMESTER 3
- Process Control 2
- Final Year Plant Design Project

TRIMESTER 1
- Core
 - Advanced Mathematical Methods in Chemical Engineering
 - Advanced Thermodynamics
 - Elective 1

TRIMESTER 2
- Core
 - Advanced Process Control
 - Advanced Reaction Engineering
 - Elective 2
 - Elective 3

TRIMESTER 3
- Specialisation
 - Advanced Separation Processes
 - Advanced Transport Phenomena
 - Elective 4

CAREER OPPORTUNITIES
Graduates can look forward to careers in these areas:

- Oil and Gas Processing
- Fine Chemicals
- Petrochemicals
- Waste and Water Management
- Pharmaceutical Manufacturing

^ The MEngTech graduate degree is solely awarded by SIT.
Note: The BEng (Hons) Chemical Engineering is jointly offered by SIT and Newcastle University (NU).
ADMISSION REQUIREMENTS

SIT adopts an aptitude-based approach in assessing applicants for admission by considering the following criteria:

MEETING THE MINIMUM ACADEMIC REQUIREMENTS

- Full-time Diploma from any local polytechnic
- GCE A Level
- International Baccalaureate Diploma (IB)
- NUS High School Diploma
- Other International Qualifications

INTERVIEW PERFORMANCE

All shortlisted applicants will be assessed through interviews. For specific degree programmes, applicants may have to submit portfolios or essays, and/or be assessed through written tests or technical tests.

* To help us understand the academic pathway you have taken, please fill in the details of both your entry qualification (i.e. Polytechnic Diploma/A Level/IB or equivalent Year 12 results) and your GCE O Level or equivalent Year 10 results/ITE (Nitec and Higher Nitec) when you apply for admission to SIT. SIT accepts applicants who did not sit for their GCE O Level examination and have come through other forms of secondary or post-secondary education such as the Polytechnic Foundation Programme (PFP).
ADMISSION REQUIREMENTS

<table>
<thead>
<tr>
<th>QUALIFICATIONS</th>
<th>Pharmaceutical Engineering, BEng (Hons)</th>
<th>Food Technology, BFoodTech (Hons) (SIT-Massey Joint Degree)</th>
<th>Chemical Engineering, BEng (Hons) (SIT-NU Joint Degree)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL-TIME DIPLOMA FROM ANY LOCAL POLYTECHNIC</td>
<td>Completed a full-time local polytechnic Diploma.</td>
<td>Applicants with relevant diplomas may apply for module exemptions. Exemptions may also be considered for relevant professional or industrial certifications.</td>
<td>Applicants with relevant diplomas (i.e Diploma in Food Science and Nutrition, Diploma in Food Science and Technology, Diploma in Applied Food Science and Nutrition), may apply for module exemptions of up to a maximum of three trimesters in the first year.</td>
</tr>
<tr>
<td>GCE A LEVEL</td>
<td>Offered General Paper (GP) or Knowledge & Inquiry (KI) in the same sitting while satisfying the Mother Tongue (MTL) requirements.</td>
<td>A good pass in any three of the following H1/H2 subjects: (Mathematics, Physics, Chemistry and Biology)</td>
<td>A good pass in one H2 Mathematics A good pass in one H2 Science subject</td>
</tr>
<tr>
<td>INTERNATIONAL BACCALAUREATE DIPLOMA (IB)</td>
<td>Obtained the IB Diploma while satisfying the Mother Tongue (MTL) requirements.</td>
<td>A good pass in any three of the following SL/HL subjects (Mathematics, Physics, Chemistry and Biology)</td>
<td>A good pass in HL Mathematics A good pass in HL Science subject</td>
</tr>
<tr>
<td>NUS HIGH SCHOOL DIPLOMA</td>
<td>Obtained the NUS High School Diploma while satisfying the Mother Tongue (MTL) requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER INTERNATIONAL QUALIFICATIONS</td>
<td>Completed at least 12 years of formal education deemed as acceptable, equivalent qualifications to be considered for admission.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Graduates of the BEng programme may choose to continue to take the Master of Engineering Technology degree (MEngTech). For up-to-date information, please refer to SingaporeTech.edu.sg
OTHER PROGRAMMES OFFERED UNDER CHEMICAL ENGINEERING AND FOOD TECHNOLOGY

CHEMICAL ENGINEERING

DEGREE PROGRAMME
➤ BSc

CAMPUS LOCATION
➤ SIT@SP Building

ELIGIBILITY¹
➤ Relevant Polytechnic Diploma Holders
➤ A Level/IB Diploma/NUS High School Diploma Holders

Chemical engineering and process engineering involve the conversion of basic raw materials into a wide variety of useful intermediate or end products such as fuels, cosmetics, dyes, foods and medical preparations. In addition to improving existing processes, TUM Chemical Engineering students will also learn to develop new process engineering applications in response to changes in safety and environmental protection requirements.

¹ Visit SingaporeTech.edu.sg for the list of relevant qualifications.
CONTACT US

SINGAPORE INSTITUTE OF TECHNOLOGY
SIT@Dover, 10 Dover Drive, Singapore 138683
📞 +65 6592 1189 (Main Line)

STUDENT ADMISSION MATTERS
📞 +65 6592 1136
✉️ Adm@SingaporeTech.edu.sg (Undergraduate Programmes)
✉️ Adm.Postgrad@SingaporeTech.edu.sg (Postgraduate Programmes)

FINANCIAL ASSISTANCE AND SCHOLARSHIP MATTERS
📞 +65 6592 1136
✉️ FAS@SingaporeTech.edu.sg

CENTRE FOR CAREER READINESS
📞 +65 6592 8150
✉️ CareerReadiness@SingaporeTech.edu.sg

DEGREE PROGRAMME RELATED QUERIES
📞 +65 6592 2021
✉️ AcdPrg@SingaporeTech.edu.sg

FINANCE, BILLINGS AND GIRO
📞 +65 6592 8149
✉️ StudentFinance@SingaporeTech.edu.sg

REGISTRAR’S OFFICE
📞 +65 6592 2091
✉️ Registrar@SingaporeTech.edu.sg

STUDENT LIFE MATTERS
📞 +65 6592 1191
✉️ SLD@SingaporeTech.edu.sg

TECHNOLOGY, INNOVATION & ENTERPRISE
📞 +65 6592 6917
✉️ Innovate@SingaporeTech.edu.sg

GIVING TO SIT
📞 +65 6592 1138
📞 +65 6592 1094
✉️ Advancement@SingaporeTech.edu.sg

LOCATE US

SIT@DOVER
10 Dover Drive, Singapore 138683

SIT@NP BUILDING
Ngee Ann Polytechnic
537 Clementi Road, Singapore 599493

SIT@NYP BUILDING
Nanyang Polytechnic
172A Ang Mo Kio Ave 8, Singapore 567739
(beside Blk Q of NYP campus)

SIT@RP BUILDING
Republic Polytechnic
43 Woodlands Ave 9, Singapore 737729

SIT@SP BUILDING
Singapore Polytechnic
510 Dover Road, Singapore 139660

SIT@TP BUILDING
Temasek Polytechnic
Blk 29B Tampines Ave 1, Singapore 528694

OPERATING HOURS
Mondays to Fridays: 11:00 am to 3:00 pm
Closed on Saturdays, Sundays and Public Holidays

© December 2018.
All information is accurate at time of print.
SIT reserves the right to amend the information without prior notice. For the most up-to-date information, please visit SingaporeTech.edu.sg.